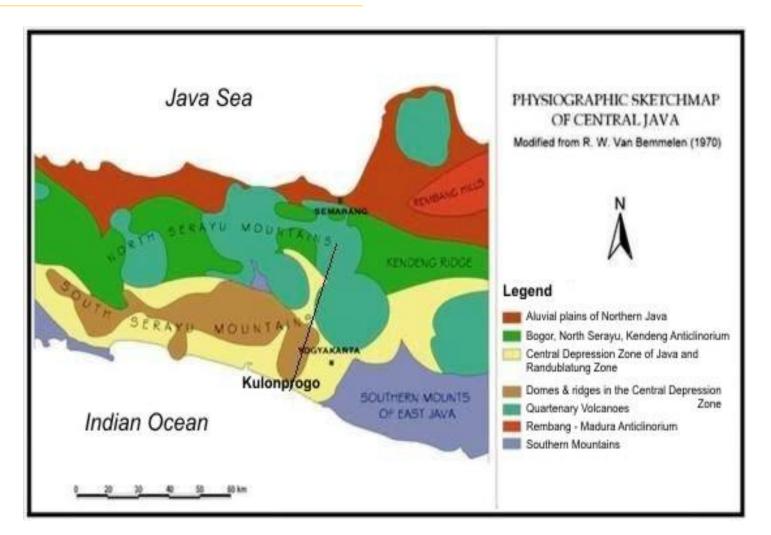
Slope Movement Characteristics and Models based on Engineeringgeological Properties of the Menoreh Hills, Purworejo Regency, Central Java, Indonesia

Sari Bahagiarti Kusumayudha¹, Ayu Narwastu Ciptahening¹, Heru Sigit Purwanto¹, Wisnu Aji Kristanto¹, Nandra Eko Nugroho¹

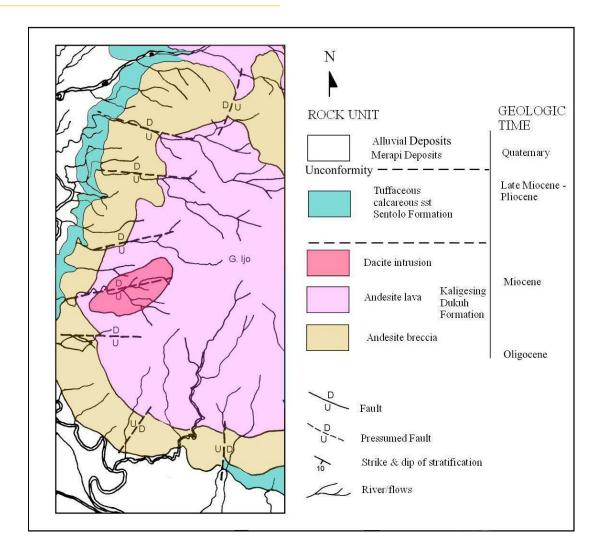
Universitas Pembangunan Nasional Veteran Yogyakarta

INTRODUCTION


- The Menoreh Hills belong to three regencies, Purworejo District, and Magelang District in Central Java province, and Kulonprogo Regency of Yogyakarta Special Region. There are mass movement occurrences almost in every rainy season, that may involve either soil, rocks, or debris, frequently result in losses, both material, infrastructure, and life. The last disaster occurred in December 2018, in the village of Tlogorejo, Kaligesing district, as many as 4 (four) families/16 peopel were affected. Landslides also caused access to the village road Tlogorejo - the village of Sudimoro was covered by avalanches and could not be passed by 4 wheels-vehicle.
- In order for prevention and anticipation of further landslides, it is necessary to identify the characteristics of common mass movement occurrence in Menoreh hills. Therefore, the purpose of this study is to identify and analyze, investigate the causes or influencing factors, learn their characters, and draw a conceptual model of mass movements of Menoreh Indslides.
- The study area is located in the Purworejo Regency, including Kaligesing, Purworejo Bener, Gebang and Bagelen districts, Central Java province, and small portion is sin in Kulonprogo Regency, Yogyakarta Special Region.

Location Map of the Study Area

The Physiographic Map of Central Java (Van Bemmelen, 1949)



METHOD OF STUDY

- Approach method applied in the study was field surveying, surface geologic and geomorphologic mapping, topographic interpretation, remote sensing, petrologic analysis, rock/soil properties analysis, and geologic structure assessment.
- Survey and mapping were done to identify the variation of physical characteristics and distribution of the lithology. Geologic structure assessment and measurements were held for recording the strike and dip of the joint or fault planes, and also for identifying the morphology such as hills, ridges, and valleys. Topographic and image interpretation were utilized for determining pattern and orientation of fracture system (joint, fractures, fault) also hills and valleys lineaments.
- To do mass movement analysis especially that involving soil, it is supported by the use of slide v.6 software. The parameters used include physical properties and mechanical properties of rock/soil samples taken from several slopes in the styarea. Determination of safety factors of the slopes is based on the principle b Bowles (1991).

Geological Map of the Study Area

Stratigraphy of the Study Area

Geologi Time	cal	Rock Symbol	Dioritic	Rock Unit	Description
Holocene Pleistocene Pliocene		norman and		Alluvial & Merapi Deposits	Unconsolidated materials: clay, sand, gravel, couble, boulder,
				Sentolo	Layered limestone, tuffaceous-calcareous-
Miocene	Late			Formation	sandstone, marl
	Middle		Torrestors	Andesitic breccia, sand- stone with calcareous matrix of marine environment	
	Early		x x x x x x x x x x	Kaligesing Formation	Andesitic volcanic, pyro- clastic, laharic breccia,
Oligocene		Michidanda	- x x x x		sandstone, lava of terrestrial environment
Eocene				Nanggulan Formation	Quatrz sandstone, marl, claystone, lignite intercalations
	Time Holocer Pleistoc Pliocene Miocene	Holocene Pleistocene Pliocene Miocene Miocene Early	Geological Time Symbol Holocene Image: state sta	Holocene Pleistocene Pliocene Late Miocene Middle Early Oligocene	Holocene Pleistocene Pliocene Late Miocene Middle Early Oligocene Carly Alluvial & Merapi Deposits Sentolo Formation Dukuh Formation Kaligesing Formation Kaligesing Formation Nanggulan

Typical Landslides involving thin soil (left), and involving thick soil (right) found at the main road of Kaligesing District

Result of Soil Slope Stability Analyses in the Study Area

	No	Location	Lithology	Morphology & topography	Soil/Rock Properties	Factor of Safety & Type of Failure	Remarks
-		Kalijambe, Village	Soil of andesite breccia	Moderately steep to steep slope (14%–55%), Structural Hills	H = 11.7 m W = 20 m, L = 12.2 m slope = 73°, c = 8.2 kg/cm ² f = 5°, g = 10.04	rotational debris slide 0.448 (unstable)	On the top of the slope there are some houses and farming. Terracing for footpath.
2	2	Kertosari	Soil of andesite breccia	Moderately steep slope, (14%– 20%), Structural Hills	= 26.5 m, slope	debris slide rotational 0.62 (unstable), Bowles (1991)	This slope is located near to the main road Purworejo- Magelang, On the top of the slope, there are perrenials

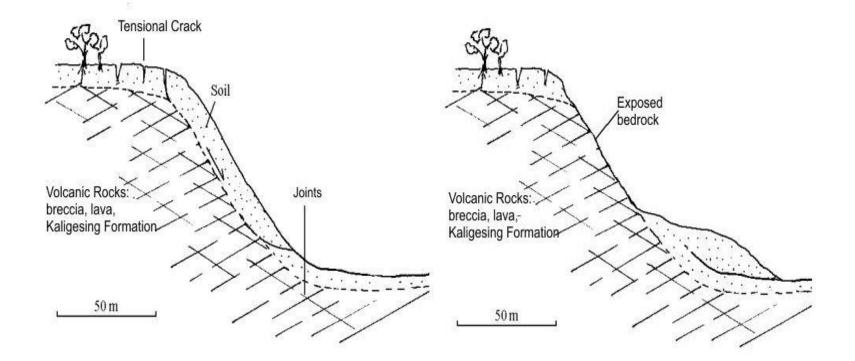
Result of Soil Slope Stability Analyses in the Study Area

No	Location	Lithology	Morphology & topography	Soil/Rock Properties	Factor of Safety & Type of Failure	Remarks
4	Sukowuwuh Village	Soil of andesite breccia	(14% - 10%)	H = 12 m, W = 16.2 m, L = 17.7 m, slope = 41° c = 4.1 kg/cm ² f = 3°, g = 11.8		The slope is located near to main road in ter connecting villages. The slope has ever slided, but already overcome by drainage system
5	Wadas Village	Soil andesite lava	Lava Hills	H = 7.2 m, W = 19.3 m, L = 8.8 m, slope = 52° c = 2.5 kg/cm2 f = 21°, g = 20.23	rotational	The location of the slope is near the villager houses

No	Location	Lithology	Morphology & topography	Soil/Rock Properties	Factor of Safety & Type of Failure	Remarks
6	Kamijoro Village	Soil of andesite breccia	Steep slope (21%–55%), Structural Hills	H = 5.4 m, W = 21.9 m, L = 5.6 m, slope = 67° c = 7.8 kg/cm ² f = 9°, g = 14.54	debris slide rotational 0.73 (unstable),	The location of the slope is near the villager houses
7	Jati	Soil of andesite breccia	Moderately steep slope (14%– 20%), Structural Hills	H = 7.5 m, W = 18.5 m, L = 7.8 m, slope = 68° c = 2.5 kg/cm ² f = 21°, g = 15.01	debris slide rotational 0.44 (unstable),	The location of the slope is near the villager houses
8	Mayungsari Village	Soil of andesite breccia	Moderately steep slope (14– 20%), Structural Hills	H = 6.2 m, W = 22.1 m, L = 6.8 m, slope = 62° c = 2.5 kg/cm ² f = 23°, g =16.77	debris slide rotational 0.54 (unstable),	On the top of the slope, there are perrenials

Result of Rock Slope Stability Analyses in the Study Area

No.	Name of Slope Location	Lithology	Rock Properties & Class	Type of Rock Slope Failure Potential
1	Wadas	Andesite Lava	c = 39.1 kPa, f = 47°, g = 2.08 g/cm3, s = 6.62 MPa, RMR = 48	Planar slide, sliding direction N254°E Wedge, sliding direction: N271°E
2	Kaliwader A	Volcanic Breccia	c = 21.8 kPa, f = 40°, g = 1.81 g/cm3, s = 12.41 MPa., RMR = 45	Wedge, sliding direction: N138°E
3	Kaliwader B	Weathered Andesite Lava	c = 15 kPa, f = 32°, g = 2.07 g/cm3, s = 6.62 MPa, RMR = 48	Wedge, sliding direction: N128°E



Result of Rock Slope Stability Analyses in the Study Area

No.	Name of Slope Location	Lithology	Rock Properties & Class	Type of Rock Slope Failure Potential
4	Kaliwader C	Andesite Lava	c = 39 kPa, f = 51°, g = 2.08 g/cm3, s = 6.62 MPa., RMR = 48	Unpotential
5	Kaliwader D	Andesite Lava	c = 39 kPa, f = 51°, g = 2.08 g/cm3, s = 6.62 MPa., RMR = 47	Planar slide, sliding direction: N340°E Wedge, sliding direction: N002°E
6	Argosari	Weathered Andesite Lava	c = 39 kPa, f = 35°, g = 2.07 g/cm3, s = 6.62 MPa., RMR = 48	Wedge, sliding direction: N225°E

Typology of slope movements involving soil of Kaligesing Formation in the Menoreh Hills

Lava with columnar joint structure, exposed after landslide occurence 2016 in Sidamulya village, Purworejo District

Based on characteristics and slope movements analyses, the conceptual model of soil and rock slope failures of Menoreh Hill can be established as the following:

Type of Rock	Involving Materials	Geologic Structures	Model	Figure
	Soil, weathered rocks, debris	Joints, faults	Type: Landslide, Sliding Plane: boundary between soil and fresh rock Translational movement	x x x x x x x x x x x x x x x x x x x
Soil	Thick to very thick soil, highly weathered rocks (> 3m)	Joints, faults	Type: Complex soil & debris slide Sliding Plane: Combination of circular and the boundary between soil and the bed rock, complex movement	x x x x x x x x x x x x x x x x x x x

Based on characteristics and slope movements analyses, the conceptual model of soil and rock slope failures of Menoreh Hill can be established as the following:

Type of Rock	Involving Materials	Geologic Structures	Model	Figure
	Fresh volcanic rocks, breccia, lava	Joints, Faults	Type: Wedge Sliding Plane: intersection of 2 joint planes	
Rock	Fresh volcanic rocks, breccia, lava	Joints, sheeting joint, faults	Type: Block glide Sliding Plane: joint plane, planar shape, translational movement	x x x x x x x x x x x x x x x x x x x x

CONCLUSIONS

- The Menoreh Hills are a dome-shaped physiographic zone, stratigraphy from the oldest to the youngest is Nanggulan Formations, Kaligesing-Dukuh Formation, Jonggrangan Formation, Sentolo Formation, and Quaternary Deposits.
- Because the morphology and topography generally display steep to very steep slopes, composed of rocks with quite high weathering rates, controlled by geological structures in the form of joints and faults, and added by high average rainfall, then the area is prone to landslides.
- The most common type of mass movement in the Menoreh Hills is landslide. The specific characteristics of landslide in the study area are generally showing the sliding plane which is not an ideal circular shape, but is a plane that is the boundary between soil and fresh rock, or combination of circular plane and boundary between soil and fresh rocks.

CONCLUSIONS

- The conceptual model of mass movements in Menoreh Hills can be grouped into 4 (four), namely landslide with sliding plane in the form of boundary between soil and fresh rocks, landslides with sliding plane as the combination of circular and the boundary between soil and fresh rock, rock planar slides, and rock wedge failure.
- This conceptual model is expected able to be used as a reference and guidence for slope stability analysis studies in other locations, especially that is controlled by volcanic (magmatic) arc tectonic environment.

THANK YOU FOR YOUR ATTENTION

