HANDOUT

Geotechnics

By: Dr. Singgih Saptono

Mining Department – Faculty of Technology Mineral Universitas Pembangunan Nasional Veteran Yogyakarta February, 2016

LESSON PART 1

Other Factors Influencing Mining

- Technology Change
- Work Practice
- Safety
- Poor Weather
- Infrastructure Constrains

Data source: From Hartman and Mutmansky (2002).

^a The gold data represent a minimum of gold produced by open-cut mines. The proportion, especially in more recent years is likely to be higher.

Data source: Mudd (2007).

Data sources: Bohi (1998) (in turn adapted from various Shell briefing notes). The data for 2008 added from Phillips (2008).

Data source: Schmitz (2005).

^a LTIFR = The number of lost time injuries per one million hours of work.

Data sources: Minerals Council of Australia, (Safety Performance Report of the Australian Minerals Industry, 2007); Minerals Council of Australia, (Safety & Health Performance Report of the Australian Minerals Industry, 1999).

Open Pit Slopes Design Scales

RESERVES CALCULATION STEPS

KEBIJAKAN DAN PEDOMAN PENGATURAN KEMANTAPAN LERENG PENAMBANGAN DI INDONESIA

Kepmen Pertambangan dan Energi No. 555. K/26/M.PE/1995

Kepmen Pertambangan dan Energi No.555. K/26/M.PE/1995 tanggal 12 Mei 1995

- Tujuan dari dikeluarkan Kepmen tersebut adalah untuk melindungi tenaga kerja, peralatan, pelaksanaan kegiatan penambangan bisa berjalan dengan aman, terjadi efisiensi biaya, efektif dan produktivitas dari pekerja tinggi serta lancar tanpa terjadi atau seminimal mungkin kecelakaan kerja.
- Menyangkut kemantapan lereng, Kepmen Pertambangan dan Energi No. 555.K/26/M.PE/1995 dalam Bab VI pasal 240 sampai dengan pasal 242 berisi tentang peraturan mengenai tinggi jenjang, lebar jenjang, dan sudut lereng yang sangat tergantung pada ukuran peralatan, jenis batuan, sistem penambangan yang dipakai serta kondisi dari keadaan geologi tempat bekerja seperti rekahan, patahan, atau tanda-tanda tekanan atau tandatanda kelemahan lainnya.

Pasal 240 Cara Kerja

- 1. Kepala Teknik Tambang (KTT) harus menjamin bahwa kemantapan lereng penambangan, penimbunan dan material lainnya telah diperhitungkan dalam perencanaan tambang
- 2. Penimbunan tanah penutup hanya dapat dilakukan pada jarak sekurang- kurangnya 7,5 m dari ujung teras penambangan
- 3. Dilarang melakukan penggalian potong bawah (*under cutting*) pada permuka kerja, teras atau galeri, kecuali mendapat persetujuan Kepala Pelaksana Inspeksi Tambang (KAPIT)
- 4. Permuka kerja harus aman dari batuan menggantung dan pada waktu pengguguran batuan, para pekerja pada tempat tersebut harus menyingkir
- 5. Permuka kerja tambang permukaan pada bagian atas daerah kegiatan tambang bawah tanah hanya dapat dibuat setelah mendapat persetujuan KAPIT

- 6. Dilarang bekerja atau berada di atas timbunan aktif batu pecah, kecuali:
 - berdasarkan perintah seorang pengawas tambang
 - curahan batu ke dan dari timbunan telah dihentikan
 - telah diperoleh kepastian bahwa corongan di bawah timbunan telah ditutup
 - pekerja menggunakan sabuk pengaman yang dihubungkan dengan tali yang sesuai dengan panjangnya, diikatkan secara kuat dan aman pada titik tetap diatasnya.

Pasal 241

Tinggi Permuka Kerja dan Lebar Teras Kerja

- 1. Kemiringan, tinggi, dan lebar teras harus dibuat dengan baik dan aman untuk keselamatan para pekerja agar terhindar dari material atau benda jatuh
- Tinggi jenjang (bench) untuk pekerjaan yang dilakukan pada lapisan yang mengandung pasir, tanah liat, kerikil, dan material lepas lainnya harus:
 - tidak boleh lebih dari 2,5 m apabila dilakukan secara manual
 - tidak boleh lebih dari 6 m apabila dilakukan secara mekanis
 - tidak boleh lebih dari 20 m apabila dilakukan dengan menggunakan clamsheel, dragline, bucket wheel excavator atau alat sejenis, kecuali mendapat persetujuan KAPIT
- Tinggi jenjang untuk pekerjaan yang dilakukan pada material kompak tidak boleh lebih dari 6 m apabila dilakukan secara manual

- 4. Dalam hal penggalian dilakukan sepenuhnya dengan alat mekanis yang dilengkapi dengan kabin pengaman yang kuat, maka tinggi jenjang maksimum untuk jenis material kompak 15 m, kecuali mendapat persetujuan KAPIT
- 5. Studi kemantapan lereng harus dibuat apabila:
 - tinggi jenjang keseluruhan pada sistem penambangan berjenjang lebih dari 15 m
 - tinggi setiap jenjang lebih dari 15 m
- 6. Lebar lantai teras kerja sekurang-kurangnya 1,5 kali tinggi jenjang atau disesuaikan dengan alat-alat yang digunakan sehingga dapat bekerja dengan aman dan harus dilengkapi dengan tanggul pengaman (*safety berm*) pada tebing yang terbuka dan diperiksa pada setiap gilir kerjadari kemungkinan adanya rekahan atau tandatanda tekanan atau tanda-tanda kelemahan lainnya.

Pasal 242

- 1. Pada waktu membuat sumuran, parit, atau pekerjaan sejenis yang dinding bukaannya mencapai tinggi lebih dari 1,2 m, harus diberi penyangga atau dibuat miring dengan sudut yang aman
- 2. Pembuatan tanggul atau bendungan air yang bersifat sementara atau tetap harus cukup kuat dan memenuhi persyaratan yang berlaku.

Surfece Mining FMI - Mineral

Surface Mining Newmont - Mineral

Surface Mining Palabora - Mineral

Surface Mining KPC - Coal

Adaro Coal Mine

Surface Mining Adaro - Coal

Surface Mining Satui - Coal

Surface Mining Senakin - Coal

Slope Failure in Copper Mine

Joint In Sediment Rock

Joint in Igneous Rock

A large scale slope failure in an open pit mine

Bingham Canyon mine slope failure

Slope failure in which some structural control by faults is evident at the top of the failure but where the mechanisms involved in the lower part of the failure are unclear.

A large scale slope failure in an open pit mine

Candidate Failure Surface Involving A Number Of Different Shear Failure Mechanisms

LESSON PART 2

Rock definition

- In <u>geology</u>, rock or stone is a naturally occurring solid <u>aggregate</u> of one or more <u>minerals</u> or <u>mineraloids</u>
- Talobre (1948)
- The man who first introduced the Rock Mechanics in France in 1948, is a rock material that makes up the earth's crust, including the fluid therein (such as water, oil, etc.).
- ASTM
- Rock is a material that consists of solid minerals (solid) form a large mass, or in the form of fragments.

Classification of rock and soil strengths (ISRM, 1981)

Class	Description	Unconfined Compressive Strength (MPa)	Examples
S1	Very soft soil - Easily penetrated several inches by fist.	<0,025	
S2	Soft clay - Easily penetrated several inches by thumb.	0,025–0,05	
S3	Firm clay - Can be penetrated several inches by thumb with moderate effort.	0,05–0,1	
S4	Stiff clay - Readily indented by thumb but penetrated only with great difficulty.	0,1–0,25	
S5	Very stiff clay - Readily indented by thumbnail.	0,25–0,5	
S6	Hard clay - Indented with difficulty by thumbnail.	>0,5	

Classification of rock and soil strengths (ISRM, 1981)

Class	Description	Unconfined Compressive Strength (MPa)	Examples
RO	Extremely weak rock - Indented by thumbnail.	0,25–1,0	
R1	Very weak rock - Crumbles under firm blows with point of geological hammer and can be peeled by a pocket knife	1,0–5,0	Chalk, Rocksalt
R2	Weak rock - Can be peeled by a pocket knife with difficulty, shallow indentations made by firm blow with point of geological hammer.	5,0–25	Coal, Schist, Siltstone
R3	Medium strong rock - Cannot be scraped or peeled with a pocket knife, specimen can be fractured with single firm blow of geological hammer.	25–50	Sandston e Slate

Classification of rock and soil strengths (ISRM, 1981)

Class	Description	Unconfined Compressive Strength (MPa)	Examples
R4	Strong rock - Specimen requires more than one blow of geological hammer to fracture it.	50–100	Gneiss
R5	Very strong rock - Specimen requires many blows of geological hammer to fracture it.	100–250	Marble, Granite
R6	Extremely strong rock - Specimen can only be chipped with geological hammer.	>250	Quartzite, dolerite, Gabbro, Basalt

Rock Classification (Bieniawski, 1989)

Dept. **Geotechnics**, Mining Handout 1 Saptono ഗ്

Geology Structure

Joint

Fault

Stereographic analysis

(a)

(c)

(d)

Ν

Pole concentrations

Great circle representing face

Great circle representing plane corresponding to centers of pole concentrations

- as direction of sliding
- at direction of toppling
- α_i dip direction, line of intersection

Handout Geotechnics . Mining Dept.

Saptono -

s.

Preliminary evaluation of slope stability of proposed open pit mine

Schimdt Net

Wulff Net

Kalsberg

S. Saptono – Handout Geotechnics , Mining Dept.

Plotting

Presentation of structural geology on stereonets, and preliminary evaluation of slope stability of proposed open pit mine.

LESSON PART 3

Uncertainty of Rocks

Relation of Discontinuity Spacing and Size of The Problem

Uncertainty of Rocks

Intact rock

Uncertainty of Rocks

Scale Effect (Cunha, 1990)

S. Saptono – Handout Geotechnics , Miking Dept.

Individual slope failure

Individual slope mudstone failure on 22 Maret 2010 in Lowwall PIT RA, Height of slope = 12 m, $\alpha = 48^{\circ}$ Some boulder exists between failures.

Influence of joint on failure mechanicsm

Where

- S1 = Joint space 1
- S3 = Joint space 3

LESSON PART 4

Laboratory activity

S. Saptono – Handout Geotechnics , Mining Dept.

UCS test

Direct Shear Test

Triaxial Test

Triaxial test

Direct shear test for soil

Site Investigation

Joint Mapping Equipments

Pengukuran karakterisasi massa batuan

- Measurement of joint orientation using the compass geology and measured is the dip and dip direction,
- Measurements of the joint spacing use scanline method.
- Joint spacing procedure using a weighting system at the normal angle.

Determination of dip and dip direction

Dip direction $\alpha + 90^{\circ}$

Slope Analysis of Joint orientation

Procedure of joint mapping

- Scanline have slope and direction
- Observer at eye level
- 10 times average joint spacing or minimum 30 m of length
- Variation of joint family
- Flatness of surface outcrops of rock masses
- Type of litology
- Seepage (Ground water condition)
- weathered
- Available of equipments

J1

Determine of joint spacing

Correction factor on determination of joint spacing

- $\alpha f/\beta f = dip direction and dip of face$
- $\alpha s/\beta s = dip direction and dip of scan line$
- $\alpha d/\beta d = dip direction and dip of joint$
- $\alpha n/\beta n$ = the normal of dip direction and dip of joint
- θ = normal angle of joint with scan line
- $\theta \alpha$ = average of θ of familty joint A
- W = scoreTerzaghi factor = $1/\cos \theta$
- i-m = Number joints
- Ji-m = apparent of joint spacing for number of joint, im
- d(im)= joint spacing prediction or true joint spacing
- dxw = joint spacing average of family joint respectively
- sw = score of true joint sapcing average

Example, determine of average true joint spacing

<u>αf =195</u> βf =50		αs =285		βs =2													
bid diskont	Joint no.	αd	βd	Jarak Joint	αn	βn	cos(an-as)	cos βn	cos βs	sin βn	sin βs	abs[cos θ]	θ	i-m	j _{i-m}	d _(im)	d _{xw}
		0	o	terukur, m	αd + 180	90 - βd							(°)		m	m	m
Α	1	75	61		255	29	0.87	0.87	1.00	0.48	0.03	0.77	39.29				
A	2	40	54	0.15	220	36	0.42	0.81	1.00	0.59	0.03	0.36	68.76	1 - 2	0.15	0.09	
A	3	18	32	0.22	198	58	0.05	0.53	1.00	0.85	0.03	0.06	86.71	2 - 3	0.22	0.05	
Α	4	50	80	0.50	230	10	0.57	0.98	1.00	0.17	0.03	0.57	55.21	3 - 4	0.50	0.16	
А	5	45	89	0.13	225	1	0.50	1.00	1.00	0.02	0.03	0.50	59.98	4 - 5	0.13	0.07	
В	48	136	75		316	15	0.86	0.97	1.00	0.26	0.03	0.84	33.23			А	0.18
В	49	152	85	0.30	332	5	0.68	1.00	1.00	0.09	0.03	0.68	47.00	48 - 49	0.30	0.23	
В	50	145	58	0.25	325	32	0.77	0.85	1.00	0.53	0.03	0.67	48.11	49 - 50	0.25	0.17	
В	51	150	60	0.20	330	30	0.71	0.87	1.00	0.50	0.03	0.63	50.99	50 - 51	0.20	0.13	
В	52	105	80	0.20	285	10	1.00	0.98	1.00	0.17	0.03	0.99	8.00	51 - 52	0.20	0.17	
С	78	215	63		35	27	-0.34	0.89	1.00	0.45	0.03	0.29	73.22			В	0.31
С	79	232	82	0.50	52	8	-0.60	0.99	1.00	0.14	0.03	0.59	53.79	78 - 79	0.50	0.22	
С	80	208	66	0.15	28	24	-0.22	0.91	1.00	0.41	0.03	0.19	78.98	79 - 80	0.15	0.06	
С	81	221	56	0.42	41	34	-0.44	0.83	1.00	0.56	0.03	0.34	69.90	80 - 81	0.42	0.11	
С	82	196	47	0.27	16	43	-0.02	0.73	1.00	0.68	0.03	0.01	89.37	81 - 82	0.27	0.05	
D	116	274	50		94	40	-0.98	0.77	1.00	0.64	0.03	0.73	43.19			с	0.21
D	117	320	48	0.20	140	42	-0.82	0.74	1.00	0.67	0.03	0.59	54.20	116 - 117	0.20	0.13	
D	118	334	60	0.16	154	30	-0.66	0.87	1.00	0.50	0.03	0.55	56.61	117 - 118	0.16	0.09	
D	119	334	38	0.40	154	52	-0.66	0.62	1.00	0.79	0.03	0.38	67.90	118 - 119	0.40	0.19	
																с	0.27
		teta-A =	63.33		w-A =	2.23											
		teta-B =	45.27		w-B =	1.42									0.44	dsw	0.24
		teta-C =	63.01		w-C =	2.20											
		teta-D =	48.80		w-D =	1.52											

where :

$\cos \theta$	= abs $[\cos(\alpha n - \alpha s) \cos \beta n \cos \beta s + \sin \beta n \sin \beta s]$
αs	= dip direction of scanline
βs	= dip of scanline
αd	= dip direction of joint
βd	= dip of joint
αd < 180,	$\alpha n = \alpha d + 180$
αd > 180,	$\alpha n = \alpha d - 180$
βn ,	$\beta n = 90 - \beta d$

RQD of joint mapping from scanline method is

Joint spacing family A= 0.18 mJoint spacing family B= 0.31 mJoint spacing family C= 0.21 mJoint spacing family D= 0.27 mTrue joint spacing= 0.24 mfrequency of joint, $\lambda = 1$ /spacing= 4.17 joints/m

RQD,
$$RQD = 100 e^{-0.1\lambda} (0.1\lambda + 1)$$
 = 93.38%

Method of joint roughness (JRC)

The equipment of Joint Compressive Strength

Persistence

 Persistence – discontinuity trace lengtg as observed in an exposure. May gave a crude measure of the areal extent or penetration length of a dicontinuity.

Fig. 12. Simple sketches and block diagrams help to indicate the relative *persistence* of the various sets of discontinuities. Examples adapted from [1] and [2].

Weathering

- Determined of weathering with metode Manual index test, yaitu (ISRM, 1981; Hencer and Martin, 1982)
 - Fresh
 - Slightly weathered (Schmidt Rebound "N"
 - >45)
 - Moderately weathered (25 < "N" < 45)
 - Highly weathered ("N" < 25)
 - Completed weathered (< 250 kPa)
 - Residual soil

Apperture of joint

 Aperture - perpendicular distance between adjacent rock walls of a discontinuity, in which the interbeing sapce is air or water filled.

Fig. 21. Diagrams showing the suggested definitions of the aporture of open discontinuities and the widek of filled discontinuities.

Cloced discontinuity

Open discontinuity

Filled discontinuity

Seepage condition

Condition	Description
Ι	Dry walls and roof
II	Minor seepage
III	Medium inflow
IV	Mayor inflow
V	Exceptionally high inflow

LESSON PART 5

Slope Stability Analysis

Plane Failure

Figure 6.2 Geometry of slope exhibiting plane failure: (a) cross-section showing planes forming a plane failure; (b) release surfaces at ends of plane failure; (c) unit thickness slide used in stability analysis.

The following assumptions are made in plane failure analysis:

- 1. Both sliding surface and tension crack strike parallel to the slope.
- 2. The tension crack is vertical and is filled with water to a depth zw.
- 3. Water enters the sliding surface along the base of the tension crack and seeps along the sliding surface, escaping at atmospheric pressure where the sliding surface daylights in the slope face. The pressure distributions induced by the presence of water in the tension crack and along the sliding surface are illustrated in Figure.
- 4. The forces W (the weight of the sliding block), U (uplift force due to water pressure on the sliding surface) and V (force due to water pressure in the tension crack) all act through the centroid of the sliding mass. In other words, it is assumed that there are no moments that would tend to cause rotation of the block, and hence failure is by sliding only. While this assumption may no be strictly true for actual slopes, the errors introduced by ignoring moments are small enough to neglect. However, in steep slopes with steeply dipping discontinuities, the possibility of toppling failure should be kept in mind.

- 5. The shear strength τ of the sliding surface is defined by cohesion c and friction angle ϕ that are related by the equation
 - $\tau = c + \sigma \tan \phi$. In the case of a rough surface or a rock mass having a curvilinear shear strength envelope, the apparent cohesion and apparent friction angle are defined by a tangent that takes into account the normal stress acting on the sliding surface. The normal stress σ acting on a sliding surface can be determined from the curves given in Figure. It is assumed that release surfaces are present so that there is no resistance to sliding at the lateral boundaries of the failing rock mass (Figure (b)).
- 5. In analyzing two-dimensional slope problems, it is usual to consider a slice of unit thickness taken at right angles to the slope face. This means that on a vertical section through the slope, the area of the sliding surface can be represented by the length of the surface, and the volume of the sliding block is represented by the cross-section area of the block (Figure (c)).

Geometries of plane slope failure: (a) tension crack in the upper slope; (b) tension crack in the face

S. Saptono – Handout Geotechnics , Mining Dept.

$$\frac{\sigma}{\gamma_r H} = \frac{\left[(1 - (z/H)^2)\cot\psi_p - \cot\psi_f\right]\sin\psi_p}{2(1 - z/H)}$$

where $z/H = 1 - (\cot\psi_f \tan\psi_p)^{1/2}$, and $\psi_s = 0$

$$FS = \frac{\text{Resisting force}}{\text{Driving force}}$$
$$= \frac{cA + \sum N \tan \phi}{\sum S}$$

I

$$FS = \frac{cA + (W\cos\psi_{p} - U - V\sin\psi_{p})\tan\phi}{W\sin\psi_{p} + V\cos\psi_{p}}$$

Wedge failure

S. Saptono – Handout Geotechnics , Mining Dept.

Wedge factor K as a function of wedge geometry

$$X = \frac{\sin \theta_{24}}{\sin \theta_{45} \cos \theta_{2,na}}$$
$$Y = \frac{\sin \theta_{13}}{\sin \theta_{35} \cos \theta_{1,nb}}$$
$$A = \frac{\cos \psi_a - \cos \psi_b \cos \theta_{na,nb}}{\sin \psi_5 \sin^2 \theta_{na,nb}}$$
$$B = \frac{\cos \psi_b - \cos \psi_a \cos \theta_{na,nb}}{\sin \psi_5 \sin^2 \theta_{na,nb}}$$

$$FS = \frac{3}{\gamma_{\rm r}H}(c_{\rm A}X + c_{\rm B}Y) + \left(A - \frac{\gamma_{\rm w}}{2\gamma_{\rm r}}X\right)\tan\phi_{\rm A} + \left(B - \frac{\gamma_{\rm w}}{2\gamma_{\rm r}}Y\right)\tan\phi_{\rm B}$$

Stereoplot of data required for wedge stability analysis

LESSON PART 6

Circular failure

The shape of typical sliding surfaces

$FS = \frac{\text{shear strength available to resist sliding } (c + \sigma \tan \phi)}{\text{shear stress required for equilibrium on slip surface}(\tau_e)}$

$$\tau_{\rm e} = \frac{c + \sigma \tan \phi}{\rm FS}$$

Use of the stability charts presented requires that the conditions in the slope meet the following assumptions:

- The material forming the slope is homogeneous, with uniform shear strength properties along the slide surface.
- 2. The shear strength τ of the material is characterized by cohesion: c and a friction angle ϕ , that are related by the equation $\tau = c + \sigma \tan \phi$
- 3. Failure occurs on a circular slide surface, which passes through the toe of the slope.
- 4. A vertical tension crack occurs in the upper surface or in the face of the slope.

Ground water flow models used with circular failure analysis chart. Handout Geotechnics, Mining Dept. Saptono -ഗ്

Circular failure chart number 1 fully drained slope.

Use of the circular failure charts

Step 1: Decide upon the ground water conditions which are believed to exist in the slope and choose the chart which is closest to these conditions, using Figure.

Step 2: Select rock strength parameters applicable to the material forming the slope.

- Step 3: Calculate the value of the dimensionless ratio $c/(\gamma H \tan \phi)$ and find this value on the outer circular scale of the chart.
- Step 4: Follow the radial line from the value found in step to its intersection with the curve which corresponds to the slope angle.
- Step 5: Find the corresponding value of tan ϕ /FS or c/(γ H FS), depending upon which is more convenient, and calculate the factor of safety.

Circular failure chart number 2 ground water condition 2

pt.

Circular failure chart number 4 ground water condition 4

Circular failure chart number 5 fully saturated slope.

.14 .16

.18 .20 .22

c 7HFS

Slope angle

.24

.26 .28 .30

 $\gamma H \tan \phi$

.30

.35

40

45

.50

.65 .70 .80 .90 1.0

1.5

2.0

4.0

8

.32 .34

.25

.03 .04 .05

.02

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0

0 .02 .04 .06

.08 .10 .12

Location of critical sliding surface and critical tension crack for drained slopes

Handout Geotechnics, Mining Dept. I Saptono ഗ്

Bishop's simplified method of slices for the analysis of non-circular failure in slopes cut into materials in which failure is defined by the Mohr–Coulomb failure criterion

Factor of safety: $FS = \frac{\sum x/(1 + Y/FS)}{\sum Z + Q}$

where

 $X = [c + (\gamma_r h - \gamma_w h_w) \tan \phi] (\Delta x / \cos \psi_b)$ $Y = \tan \psi_b \tan \phi$ $Z = \gamma_r h \Delta x \sin \psi_b$ $Q = \frac{1}{2} \gamma_w z^2 (\alpha / R)$

Li dkk (2002)

Stability charts for rock slopes based on the Hoek-Brown failure criterion

A.J. Li^{a,*}, R.S. Merifield^a, A.V. Lyamin^b

Fig. 4. Average finite element limit analysis solutions of stability numbers $(\beta = 45^{\circ})$.

Fig. 6. Average finite element limit analysis solutions of stability numbers $(\beta = 30^{\circ})$.

LESSON PART 7

Toppling failure

Suggested toppling mechanism of the north face of Vaiont slide (Muller, 1968)

Common classes of toppling failures: (a) block toppling of columns of rock containing widely spaced orthogonal joints; (b) flexural toppling of slabs of rock dipping steeply into face; (c) block flexure toppling characterized by pseudo-continuous flexure of long columns through accumulated motions along numerous cross-joints (Goodman and Bray 1976).

Secondary toppling modes: (a) toppling at head of slide; (b) toppling at toe of slide with shear movement of upper slope (Goodman and Bray, 1976); (c) toppling of columns in strong upper material due to weathering of underlying weak material; (d) toppling at pit crest resulting in circular failure of upper slope (Wyllie and Munn, 1978).

Failure stages for large-scale toppling failure in a slope (Sjöberg, 2000)

Model for limiting equilibrium analysis of toppling on a stepped base (Goodman and Bray, 1976).

Toppling Analysis

• The first step in toppling analysis is to calculate the dimensions of each block. Consider the regular system of blocks shown in above which the blocks are rectangular with width x and height yn. The dip of the base of the blocks is ψp and the dip of the orthogonal planes forming the faces of the blocks is $\psi d(\psi d = 90 - \psi p)$. The slope height is H, and the face is excavated at angle ψf while the upper slope above the crest is at angle ψs.

n	Уn	$y_n/\Delta x$	Mn	Ln	Pn-t	Pn.s	Pn	R _n	Sn	S _n /R _n	Mode
16	4.0	0.4			0	0	0	866	500	0.577	
15	10.0	1.0			0	0	0	2165	1250	0.577	STABLE
14	16.0	1.6			0	0	0	3463	2000	0.577	
13	22.0	2.2	17	22	0	0	0	4533.4	2457.5	0.542	
12	28.0	2.8	23	28	292.5	-2588.7	292.5	5643.3	2966.8	0.526	т
11	34.0	3.4	29	34	825.7	-3003.2	825.7	6787.6	3520.0	0.519	0
10	40.0	4.0	35	35	1556.0	-3175.0	1556.0	7662.1	3729.3	0.487	P
9	36.0	3.6	36	31	2826.7	-3150.8	2826.7	6933.8	3404.6	0.491	P
8	32.0	3.2	32	27	3922.1	-1409.4	3922.1	6399.8	3327.3	0.520	L
7	28.0	2.8	28	23	4594.8	156.8	4594.8	5872.0	3257.8	0.555	1
6	24.0	2.4	24	19	4837.0	1300.1	4837.0	5352.9	3199.5	0.598	N
5	20.0	2.0	20	15	4637.5	2013.0	4637.5	4848.1	3159.4	0.652	G
4	16.0	1.6	16	11	3978.1	2284.1	3978.1	4369.4	3152.5	0.722	
3	12.0	1.2	12	7	2825.6	2095.4	2825.6	3707.3	2912.1	0.7855	
2	8.0	0.8	8	3	1103.1	1413.5	1413.5	2471.4	1941.3	0.7855	SLIDING
1	4.0	0.4	4	-	-1485.1	472.2	472.2	1237.1	971.8	0.7855	

Limited equilibrium analysis of a toppling slope: (a) slope geometry; (b) table listing block dimensions, calculated forces and stability mode; (c) distribution of normal (R) and shear (S) forces on base of blocks (Goodman and Bray, 1976).

(b)

LESSON PART 8

Rock Mass Classification

Rock Mass Rating Classification (Bieniawski, 1989)

Q
Ð
Õ
00
C
Ē
2
=
\geq
_
~
S
0
5
7
T
N.
<u>u</u>
7
2
Ð
G
1
H
2
0
σ
2
J
Ť
Q
C
0
Ť
Q
B
(Å
10

ئہ

A. PAR	AMETER KLASIFIK	ASI DAN PEMBOBOTANN	IYA							
	Param	eter	Selang Nilai							
		Indeks Kekuatan Point Load (MPa)	>10	4 - 10	2 - 4	1 - 2	Untuk dipal	nilai yang kai hasil U	g kecil JCS	
1.	Kekuatan Batuan U	tuh Kuat Tekan Tekan Uniaksial (MPa)	>250	100 - 250	50 - 100	25 - 50	5 - 25	1 - 5	<1	
	Pembobotan		15	12	7	4	2	1	0	
2.	2. Rock Quality Designation (%) Pembobotan		90 - 100	75 - 90	50 - 75	25 - 50		<25		
			20	17	13	5	3			
Spasi Rekahan			>2m	0.6 - 2m	0.2 - 0.6m	60 - 200mm		<60mm		
5.	Pembobotan		20	15	10	8	5			
4.	. Kondisi Rekahan		Permukaan sangat kasar, tidak menerus tidak reng-gang dan tidak lapuk	Agak kasar, rengangan <1mm, agak lapuk	Agak kasar , renggangan <1mm, sangat lapuk	Slickensides/g ouge <5mm, renggangan 1 - 5mm, menerus	Gouge >5mm renggar meneru	lemah, te atau ngan 5mn s	bal n,	
	Pembobotan		30	25	20	10		0		
5.		Aliran /10m panjang terowongan (L/min.)	Tidak ada	<10	10 - 25	25 - 125	25 >125			
	Air Tanah	Tek. Pori/Teg. Utama Max.	0	<0.1	0.1 - 0.2	0.2 - 0.5	>0.5			
	Keadaan Umum		kering	lembab	basah	menetes	mengalir			
	Pembobotan		15	10	7	4		0		

B. PENGARUH ORIENTASI JURUS DAN KEMIRINGAN PADA PEMBUATAN TEROWONGAN							
Arał	n jurus tegak lurus	sumbu terowo	Arah jurus sejajar sumbu		Kemiringan 0°- 20° tidak		
Maju searah kemiringan Maju melawan kemiringan			terowongan		memperhatikan		
45° - 90°	20° - 45°	45° - 90°	20° - 45°	45° - 90°	20° - 45°	kemiringan	
Sangat menguntung- kan	Menguntung- kan	Sedang	Tidak menguntung- kan	Sangat tidak menguntung- kan	Sedang	Tidak menguntungkan	

C. PENYESUAIAN PEMBOBOTAN UNTUK ORIENTASI KEKAR							
Orientasi Jurus	dan Kemiringan	Sangat menguntungkan	Menguntungkan	Sedang	Tidak menguntungkan	Sangat tidak menguntungkan	
	Terowongan	0	-2	-5	-10	-12	
Pembobotan	Pondasi	0	-2	-7	-15	-25	
	Lereng	0	-2	-25	-50	-60	

D. KELAS MASSA BATUAN DARI PEMBOBOTAN TOTAL

Pembobotan	100 - 81	80 - 61	60 - 41	40 - 21	<21
Nomor kelas	Ι	II	III	IV	V
Pemerian	Sangat Baik	Baik	Sedang	Buruk	Sangat Buruk
Kohesi (kPa)	>400	300 - 400	200 - 300	100 - 200	<100
Sudut Gesek	> 15	25 15	25 25	15 25	-15
Dalam (°)	>43	33-45	23 - 33	13 - 25	<15

Guide of joint condition and rating							
Persistensi	< 1 m	1 – 3 m	3 – 10 m	10 – 20 m	> 20 m		
rating	6	4	2	1	0		
aperture	none	< 0.1 mm	0.1 – 1.0 mm	1 – 5 mm	> 5 mm		
rating	6	5	4	1	0		
roughness	Very rough	Rough	Slightly rough	Smooth	Slickenside d		
rating	6	5	3	1	0		
Filling (gauge)	none	Hard filling < 5mm	Hard filling > 5 mm	Soft filling < 5mm	Soft filling > 5mm		
rating	6	4	2	2	1		
weathering	Unweather ed	Slightly weathere d	Moderately weathered	Highly weathere d	Decompose d		
rating	6	5	3	1	0		

Г

Slope Mass Rating (Romana, 1985)

A. PAF	AMETER KLASIFIK.	ASI DAN PEMBOBOTANN	JYA							
	Param	eter	Selang Nilai							
1.		Indeks Kekuatan Point Load (MPa)	>10	4 - 10	2 - 4	1 - 2	Untuk dipal	nilai yan kai hasil l	g kecil UCS	
	Kekuatan Batuan Utu	tuh Kuat Tekan Tekan Uniaksial (MPa)	>250	100 - 250	50 - 100	25 - 50	5 - 25	1 - 5	<1	
	Pembobotan		15	12	7	4	2	1	0	
2.	2. Rock Quality Designation (%) Pembobotan		90 - 100	75 - 90	50 - 75	25 - 50	<25			
			20	17	13	5	3			
3	3 Spasi Rekahan		>2m	0.6 - 2m	0.2 - 0.6m	60 - 200mm	<60mm			
5.	Pembobotan		20	15	10	8	5			
4.	Kondisi Rekahan		Permukaan sangat kasar, tidak menerus tidak reng-gang dan tidak lapuk	Agak kasar, rengangan <1mm, agak lapuk	Agak kasar , renggangan <1mm, sangat lapuk	Slickensides/g ouge <5mm, renggangan 1 - 5mm, menerus	Gouge lemah, tebal >5mm atau renggangan 5mm, menerus			
	Pembobotan		30	25	20	10		0		
	Air Tanah	Aliran /10m panjang terowongan (L/min.)	Tidak ada	<10	10 - 25	25 - 125		>125		
5.		Air Tanah Tek. Pori/Teg. Utama Max.		0	<0.1	0.1 - 0.2	0.2 - 0.5	>0.5		
		Keadaan Umum	kering	lembab	basah	menetes	mengalir			
	Pembobotan		15	10	7	4		0		

Adjustment Rating for Joints

Case		Very	Favorable	Fair	Unfavorable	Very
		favorable				unfavorable
Р	$\alpha_j - \alpha_s$	> 30°	30-20°	20-10°	10-5°	5°
Т	$\left \left(\alpha_{j}-\alpha_{s}\right)-180^{\circ}\right $					
P/T	F ₁	0.15	0.40	0.70	0.85	1.00
Р	β _j	< 20°	20-30°	30-35°	35-45°	45°
Р	F ₂	0.15	0.40	0.70	0.85	1.00
Т	F ₂	1	1	1	1	1
Р	$\beta_j - \beta_s$	> 10°	10-0°	0°	0° to 10°	< -10°
Т	β _i - β _s	< 110°	110-120°	> 120°	-	-
P/T	F ₃	0	-6	- 25	-50	- 60

P, plane failure; T, toppling failure; α_j , joint dip direction; α_s slope dip direction; β_j , joint dip; β_s , slope dip

Adjustment Rating for Methods of Excavation of Slopes

Method	Natural	Presplitting	Smooth	Blasting or	Deficient
	Slope		blasting	mechanical	blasting
F ₄	+ 15	+ 10	+ 8	0	- 8

Tentative Description of SMR Classes

lini			
S , R	Class	SMR	Description
nic	Ι	81-100	Very good
sch	II	61-80	Good
eote	III	41-60	Normal
t Ŭ	IV	21-40	Bad
nop	V	0-20	Very bad
land			1
T T			
ouo			
pto			
. Sa			
S			

Class	SMR	Description	Stability	Failures	Support
Ι	81-100	Very good	Completely stable	None	None
Π	61-80	Good	Stable	Some blocks	Occasional
III	41-60	Normal	Partially stable	Some joints or many wedges	Systematic
IV	21-40	Bad	Unstable	Planar or big wedges	Important/corrective
V	0-20	Very bad	Completely unstable	Big planar or soil-like	Reexcavation

Description of SMR and Failure probability

Description SMR Class

Class N	Vb	Va	IVb	IVa	IIIb	IIIa	IIb	IIa	Ib	Ia
Description	n Very bad		Bad		Fai	r	Go	od	Very good	
Stability	Comple	etely unstable	unstable	e	Partially	stable	stable		Completely stable	
failures	Big planar or soil like		Planar or Big Wedges		Some joint or		Some blocks		None	
					many	wedges				
Support	Re	excavtion	Important cor	rective	Systen	natic	Occas	ional	No	one

Probable Failure According SMR Values

Plane Failure	Very big						Major					None				
Wedge Failure								Many	$\overline{\ }$		Some			Very F	Few	None
Toppling						Major				Minoi	•			None		
Mass Faulure		Possible					None									
SMR	10	15	15	20	30	40	45	50	55	60	65	70	75	80	90	100

LESSON PART 9

ROCK MASS STRENGTH

Geological Strength Index (Hoek,1995)

A. PARA	METER KLASIFIKASI D	AN PEMBOBOTANNYA	L										
	Parameter		Selang Nilai										
1.	Kekuatan Batuan Utuh	Indeks Kekuatan Point Load (MPa)	>10	4 - 10	2 - 4	1 - 2	Untuk nilai yang kecil dipakai hasil UCS						
		Kuat Tekan Tekan Uniaksial (MPa)	>250	100 - 250	50 - 100	25 - 50	5 - 25	1 - 5	<1				
	Pembobotan	15	12	7	4	2	1	0					
2. Rock Quality Designation (%) Pembobotan		90 - 100	75 - 90	50 - 75	25 - 50	<25							
			20	17	13	5	3						
3.	Spasi Rekahan	>2m	0.6 - 2m	0.2 - 0.6m	60 - 200mm	<60mm							
	Pembobotan	20	15	10	8	5							
4.	Kondisi Rekahan	Permukaan sangat kasar, tidak menerus tidak renggang dan tidak lapuk	Agak kasar, rengangan <1mm, agak lapuk	Agak kasar , renggangan <1mm, sangat lapuk	Slickensides/ gouge <5mm, renggangan 1 - 5mm, menerus	Gouge ler >5mm ata 5mm, me	l ngan						
	Pembobotan	25	20	12	6	0							

Estimate of Geological Strength Index GSI based on geological descriptions

Rock	Class	Group	Texture							
type			Coarse	Medium	Fine	Very fine				
	Clastic		Conglomerate (22)	Claystone 4						
MENTARY	Organic			Chalk 7 Coal (8-21)						
SED	Non- Clastic	Carbonate	Breccia (20)	Sparitic Limestone (10)	Micritic Limestone 8					
		Chemical		Gypstone 16	Anhydrite 13					
HIC	Non Foliated		Marble 9	Hornfels (19)	Quartzite 24					
MORP	Slightly foliated		Migmatite (30)	Amphibolite 25 - 31	Mylonites (6)					
META	Fo	liated*	Gneiss 33	Schists 4 - 8	Phyllites (10)	Slate 9				
	т	inht	Granite 33		Rhyolite (16)	Obsidian (19)				
		agni	Granodiorite (30)		Dacite (17)					
SUC			Diorite (28)		Andesite 19					
IGNE	I	Dark	Gabbro 27	Dolerite (19)	Basalt (17)					
			Norite 22							
	Extrusive pyroclastic type		Agglomerate (20)	Breccia (18)	Tuff (15)					

Values of the constant mi for intact rock, by rock group

S. Saptono – Handout Geotechnics , Mining Dept.

Determine of cohesion and friction angle rock with Hoek & Brown criterion

$$c' = \frac{\sigma_{ci}[(1+2\alpha)s + (1-\alpha)m_b\sigma_{3n}](s+m_b\sigma_{3n})^{\alpha-1}}{(1+\alpha)(2+\alpha)\sqrt{1 + (6\alpha m_b(s+m_b\sigma_{3n})^{\alpha-1}/(1+\alpha)(2+\alpha)}}$$

$$\phi' = \sin^{-1} \left[\frac{6\alpha m_b (s + m_b \sigma_{3n})^{\alpha - 1}}{2(1 + \alpha)(2 + \alpha) + 6\alpha m_b (s + m_b \sigma_{3n})^{\alpha - 1}} \right]$$

where:

c' : effective coheson

 ϕ ' : effective friction angle

 σ_1 ' & σ_3 ': effective principla stress

 σ_{ci} : UCS intact rock

 m_b , s and α : constanta rock massa Hoek & Brown

Hoek, Carranza-Torres and Corkum, 2002

$$\sigma_{1}^{'} = \sigma_{3}^{'} + \sigma_{ci} (m_{b} \sigma_{3}^{'} / \sigma_{ci} + s)^{a}$$

$$m_{b} = m_{i} \exp(GSI - 100/28 - 14D)$$

$$s = \exp(GSI - 100/9 - 3D)$$

$$a = \frac{1}{2} + \frac{1}{6} (e^{-GSI/15} - e^{-20/3})$$

$$E_{m}(GPa) = \left(1 - \frac{D}{2}\right) \sqrt{\frac{\sigma_{ci}}{100}} \cdot 10^{((GSI - 10)/40)}$$

$$\phi^{'} = \sin^{-1} \left[\frac{6am_{b}(s + m_{b}\sigma_{3n}^{'})^{a-1}}{2(1 + a)(2 + a) + 6am_{b}(s + m_{b}\sigma_{3n}^{'})^{a-1}}\right]$$

$$c^{'} = \frac{\sigma_{ci} \left[(1 + 2a)s + (1 - a)m_{b}\sigma_{3n}^{'}\right] (s + m_{b}\sigma_{3n}^{'})^{a-1}}{(1 + a)(2 + a)\sqrt{1 + (6am_{b}(s + m_{b}\sigma_{3n}^{'})^{a-1}}\right)/((1 + a)(2 + a))}$$

A disturbance factor (D)

Application: 🔿 Tunnels 💿 Slopes

Small scale blasting in civil engineering slopes results in modest rock mass damage, particularly if controlled blasting is used as shown on the left hand side of the photograph. However, stress relief results in some disturbance. D=0.7 Good Blasting

D=1.0 Poor Blasting

In some softer rocks excavation can be carried out by ripping and dozing and the degree of damage to the slopes is less. D=1.0 Production Blasting

D=0.7 Mechanical Excavation

b. Plot of friction angle φ'

a. Plot of ratio of cohesive strength c' to uniaxial compressive strength σci .

(Hoek-Brown, 1997)

S. Saptono – Handout Geotechnics , Mining Dept.

$$\sigma_1' = \sigma_3' + \sigma_{ci} \left(m_i \frac{\sigma_3'}{\sigma_{ci}} + 1 \right)^{0.5}$$

- The relationship between the principal stresses at failure for a given rock is defined by two constants, σ_{ci} and m_i.
- Wherever possible the values of these constants should be determined by statistical analysis of the results of a set of triaxial tests on carefully prepared core samples.

- The range of minor principal stress (σ_3 ') values over which these tests are carried out is critical in determining reliable values for the two constants.
- In deriving the original values of σ_{ci} and m_i , Hoek and Brown (1980) used a range of $0 < \sigma_3' < 0.5\sigma_{ci}$.
- In order to be consistent, it is essential that the same range be used in any laboratory triaxial tests on intact rock specimens.

- At least five data points should be included in the analysis.
- Once the five or more triaxial test results have been obtained, they can be analysed to determine the σ_{ci} and the m_i as described by Hoek and Brown (1980).
Intact rock properties

Triaxial test	t data				
X		У	ху	xsq	ysq
sig3	sig1				
0	38.3	1466.89	0.0	0.0	2151766
5	72.4	4542.76	22713.8	25.0	20636668
7.5	80.5	5329.00	39967.5	56.3	28398241
15	115.6	10120.36	151805.4	225.0	102421687
20	134.3	13064.49	261289.8	400.0	170680899
47.5	441.1	34523.50	475776.5	706.3	324289261
sumx		sumy	sumxy	sumxsq	sumysq
Calculation	results				
Number of	tests	n =	5		
Uniaxial stre	ength	sigci =	37.4		
Hoek-Brow	n constant	mi =	15.50		
Hoek-Brow	n constant	s =	1.00		
Coefficient	of determin	ation r2 =	0.997		

Cell formulae

 $y = (sig1-sig3)^2$

sigci = SQRT(sumy/n - (sumxy-sumx*sumy/n)/(sumxsq-(sumx^2)/n)*sumx/n)

mi = (1/sigci)*((sumxy-sumx*sumy/n)/(sumxsq-(sumx^2)/n))

 $r2 = ((sumxy-(sumx*sumy/n))^2)/((sumxsq-(sumx^2)/n)*(sumysq-(sumy^2)/n))$

Development of rock slope stability in sof rock (Saptono, 2012)

Paremeter of development slope stability on soft rock

	Parameter Kekuatan					Pengaruh Skala			Klasifikasi						
Peneliti	c	¢	σ	m _i	s	m _b	a	GSI	D	σ	с	¢	RMR	GSI	Uji
Hoek & Bray (1981)		\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-
Hoek & Brown (1980)	-	-	\checkmark	\checkmark	\checkmark	-	-	-	-	\checkmark		\checkmark	-	-	ТХ
Hoek & Brown (1988)		\checkmark	\checkmark	\checkmark	\checkmark	-	-	-	-	\checkmark		\checkmark	-	-	ТХ
Hoek & Brown (1995)		\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		-	\checkmark		\checkmark	-	\checkmark	ТХ
Hoek & Brown (2002)		\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		\checkmark	\checkmark		\checkmark	-	\checkmark	ТХ
Saptono (2008 – 2012)			-	-	-	-	-	-	-	-				-	GL

Donaliti	Jenis Batuan]	Iklim	Tingkat Pelapukan		Kalag Datuan	
Peneitti	Beku	Sedimen	Metamorf	Tropik	Non - tropik	Tinggi	Rendah	Kelas Datuali	
Hoek & Bray (1981)	-	-	-	-	\checkmark	-	\checkmark	Tanah & Timbunan	
Hoek & Brown (1980)	\checkmark	-	-	-	\checkmark	-	\checkmark	Batuan	
Hoek & Brown (1988)	\checkmark	-	-	-	\checkmark	-	\checkmark	Batuan	
Hoek & Brown (1995)	\checkmark	-	-	-	\checkmark	-	\checkmark	Batuan	
Hoek & Brown (2002)	\checkmark	-	-	-	\checkmark	-	\checkmark	Batuan	
Saptono (2008 – 2012)	-	\checkmark	-		-	\checkmark	-	Batuan Lunak	

Donaliti	Bentuk Penentuan	Parameter penentuan FK lereng									
Penenu	Stabilitas	с	¢	σ _c	m _i	GSI	RMR	γ	h	β	
Hoek & Bray (1981)	Grafik	\checkmark	\checkmark	-	-	-	-	\checkmark		\checkmark	
Hoek & Brown (2002)	Grafik Li dkk. (2008)	-	-	\checkmark	\checkmark	\checkmark	-	\checkmark		\checkmark	
Saptono (2008 – 2012)	Grafik	\checkmark	\checkmark	\checkmark	-	-	\checkmark	\checkmark	\checkmark	\checkmark	

Slope stability curve (Saptono, 2012)

Example of use of stability curve (Saptono, 2012)

Example case :

Phase 1:

Curve 1: RMR = 25 and $\sigma_c = 3$ MPa c = 0,172 MPa,

Phase 2:

Curve 2: RMR = 25 $\phi = 29^{\circ}$.

Example of use of stability curve (Saptono, 2012)

Phase 3:

Curve 3:

 $\bullet \quad \beta = 50^{\circ}$

FK _{Grafik}*)

3,74

▲ 12 m

- $(c/\gamma h \tan \phi) = 1,03$
- $(\tan \phi/FK) = 0,148$
- $FK = (\tan \phi/0, 148) = 3,74$

FK_{KB}^{**)}

4.19

RMR = 25, $\sigma_c = 3$ MPa

*) Grafik

FK_{EH} ***)

3.69

 $\gamma = 25 \text{ kN/m}^3$

 \mathbf{m}

GRAFIK

Handout Geotechnics, Mining Saptono -ഗ്

Dept.

LESSON PART 10 & 11

.

FAILURE CRITERIA

Types of Failure

- **Fracture** via crack development and propagation (brittle, ductile, low- and high-cycle fatigue, etc.)
- Yielding via plastic (permanent) deformation of ductile materials
- Low (High) Stiffness due to softening (hardening) caused by aging (cyclic loading, cold work, environmental effects, etc.)
- Instability via buckling (abrupt decrease in stiffness with loading)
- Creep slow increase of deformation (mostly at high temperature)

A variety of rock failure criteria

 A variety of rock failure criteria and rock constitutive models are developed based on experimental and theoretical efforts and concepts. Like, Plane Griffith Crack Theory (Griffith, 1921), Mohr- Coulomb Criterion (Coulomb, 1776) and Hoek and Brown Failure Criterion (Hoek et al., 2002)

Mohr–Coulomb failure criterion

 The Mohr–Coulomb failure criterion represents the linear envelope that is obtained from a plot of the shear strength of a material versus the applied normal stress.

$$au = \sigma \ \tan(\phi) + c$$

where τ is the shear strength, σ is the normal stress, c is the intercept of the failure envelope with the τ axis, and ϕ is the slope of the failure envelope.

$$\sigma_n = \frac{1}{2}(\sigma_1 + \sigma_3) + \frac{1}{2}(\sigma_1 - \sigma_3)\cos 2\beta$$

$$\tau_f = \frac{1}{2}(\sigma_1 - \sigma_3)\sin 2\beta$$

$$\sigma_1 = \frac{2c + \sigma_3[\sin 2\beta + \tan \varphi(1 - \cos 2\beta)]}{\sin 2\beta - \tan \varphi(1 + \cos 2\beta)}$$

$$\sigma_1 = \frac{2c \cos \varphi + \sigma_3(1 + \sin \varphi)}{1 - \sin \varphi}$$

$$\sigma_c = \frac{2c \cos \varphi}{1 - \sin \varphi}$$

$$\sigma_T = \frac{2c \cos \varphi}{1 + \sin \varphi}$$

Hoek and brown criterion (2002)

 This criterion which is one of the most important rock failure criteria widely applied by rock mechanics specialists can be used for both intact rocks and rock masses.

$$\sigma_{1}' = \sigma_{3}' + \sigma_{ci} \left(m \frac{\sigma_{3}'}{\sigma_{ci}} + s \right)^{0.5}$$

Where σ_1' and σ_3' are the major and minor effective principal stresses at failure σ_{ci} is the uniaxial compressive strength of the intact rock material and m and s are material constants, where s = 1 for intact rock.

Hoek and brown criterion (2002)

$$\sigma_{1}' = \sigma_{3}' + \sigma_{ci} \left(m_{b} \frac{\sigma_{3}'}{\sigma_{ci}} + s \right)^{a} \qquad s = \exp\left(\frac{GSI - 100}{9 - 3D}\right)$$
$$m_{b} = m_{i} \exp\left(\frac{GSI - 100}{28 - 14D}\right) \qquad a = \frac{1}{2} + \frac{1}{6} \left(e^{-GSI/15} - e^{-20/3}\right)$$

In which, σ_{ci} and D are uniaxial compressive strength of intact rock and disturbance factor, respectively. Also m_i , s and a are material constants which depend on material quality. And, GSI is Geological Strength Index (Hoek et al.,2002).

MOHR-COULOMB CRITERION

$$\phi' = \sin^{-1} \left[\frac{6am_b (s + m_b \sigma'_{3n})^{a-1}}{2(1+a)(2+a) + 6am_b (s + m_b \sigma'_{3n})^{a-1}} \right]$$

$$c' = \frac{\sigma_{ci} \left[(1+2a)s + (1-a)m_b \sigma'_{3n} \right] (s + m_b \sigma'_{3n})^{a-1}}{(1+a)(2+a)\sqrt{1 + (6am_b (s + m_b \sigma'_{3n})^{a-1})} / ((1+a)(2+a))}$$

Texture Rock Class. Group. Medium Fine Coarse Very fine type. Sandstone Conglomerate Siltstone Claystone 19 (22)9 4. Clastic. Greywacke -(18)Chalk -SEDIMENTARY 7 Organic Coal -(8-21)Breccia Sparitic Micritic Non-Clastic Carbonate (20)Limestone Limestone (10)8 Anhydrite Gypstone Chemical 16 13 Marble Hornfels Quartzite MELAMORIHIC Non Foliated 9 (19)24 Amphibolite Mylonites Migmatite. Slightly foliated 25 - 31(30)(6) Phyllites | Schists Slate Gneiss. Foliated* 33 4 - 8 (10)9 Obsidian Granite Rhyolite 33 (19) (16)Light Granodiorite Dacite (30)(17)**IGNEOUS** Diorite Andesite (28)19 Gabbro Dark Dolerite Basalt. 27 (19) (17)Norite $\mathbf{22}$ Agglomerate Breccia Tuff Extrusive pyroclastic type (20)(18)(15)

Table 2. Values of the constant m₁ for intact rock, by rock group. Note that values in parenthesis are estimates.

* These values are for intact rock specimens tested normal to bedding or foliation. The value of m_l will be significantly different if failure occurs along a weakness plane.

Table 1: Guidelines for estimating disturbance factor D

Appearance of rock mass	Description of rock mass	Suggested value of D
	Excellent quality controlled blasting or excevation by Tunnel Boring Machine results in minimal disturbance to the confined rock mass surrounding a tunnel.	D = 0
Le la	Mechanical or hand excavation in poor quality rock masses (no blasting) results in minimal disturbance to the surrounding rock mass. Where squeezing problems result in significant floor heave, disturbance can be severe unless a temporary invert, as shown in the photograph, is placed.	D=0 D=0.5 No invert
	Very poor quality blasting in a hard rock tunnel results in severe local damage, extending 2 or 3 m, in the surrounding rock mass.	D = 0.8
A Contraction of the second se	Small scale blasting in civil engineering slopes results in modest rock mass damage, particularly if controlled blasting is used as shown on the left hand side of the photograph. However, stress relief results in some disturbance.	D = 0.7 Good blasting D = 1.0 Poor blasting
	Very large open pit mine slopes suffer significant disturbance due to heavy production blasting and also due to stress relief from overburden removal. In some softer rocks excavation can be carried out by ripping and dozing and the degree of damage to the slopes is less.	D = 1.0 Production blasting D = 0.7 Mechanical excevation

Comparison between the results achieved by controlled blasting (on the left) and normal bulk blasting for a surface excavation in gneiss.

Table 5. Estimate of Geological Strength Index GSI based on geological descriptions.

FAIR Smooth, moderately weathered or altered surfaces GEOLOGICAL STRENGTH INDEX POOR Sickensided, highly weathered surfaces with compact coatings or filings of angular fragments slightly weathered, iron stained surfaces highly weathered surfaces with ings or fillings From the letter codes describing the structure and surface conditions of the rock mass (from unweathered surfaces Table 4), pick the appropriate box in this chart, Estimate the average value of the Geological Strength Index (GSI) from the contours. Do not attempt to be too precise. Quoting a range of GSI from 36 to 42 is more realistic than stating that GSI = 38. SURFACE CONDITIONS Slickensided, high soft clay coatings Very rough, fresh G00D VERY POOR GOOD Reugh VERY DECREASING SURFACE QUALITY <> STRUCTURE 80 BLOCKY - very well interlocked undisturbed rock mass consisting of cubical blocks formed by three 70 orthogonal discontinuity sets OF ROCK PIECES 60 VERY BLOCKY - interlocked. partially disturbed rock mass with multifaceted angular blocks formed by four or more discontinuity sets DECREASING INTERLOCKING 40 BLOCKY/DISTURBED- folded and/or faulted with angular blocks formed by many intersecting discontinuity sets 30 Ŵ DISINTEGRATED - poorly interlocked, heavily broken rock mass with a mixture or angular and rounded rock pieces

Fig. 23. Structurally controlled failure in the face of a steep bench in a heavily jointed rock mass.

LESSON PART 12

Numerical analysis

Analysis result	Numerical solution	Limit equilibrium
Equilibrium	Satisfied everywhere	Satisfied only for specific objects, such as slices
Stresses	Computed everywhere using field equations	Computed approximately on certain surfaces
Deformation	Part of the solution	Not considered
Failure	Yield condition satisfied everywhere; slide surfaces develop "automatically" as conditions dictate	Failure allowed only on certain pre-defined surfaces; no check on yield condition elsewhere
Kinematics	The "mechanisms" that develop satisfy kinematic constraints	A single kinematic condition is specified according to the particular geologic conditions

Boundary conditions

Typical recommendations for locations of artificial far-field boundaries in slope stability analyses

Slope Rock Mass Classification

- RMR Rock mass rating (Bieniawski, 1976 & 1989)
- MRMR Mining rock mass rating (Laubscher, 1977 & 1990)
- RMS Rock mass strength (Sleby, 1980)
 - SMR Slope mass rating (Romana, 1985)
 - SRMS Slope rock mass rating (Robertson, 1988)
 - CSMR Chinese system for SMR (Chen, 1995)
 - Geological strength index (Hoek et al, 1995)
 - M-RMR Modified rock mass classification (Unal, 1996)
 - Index of rock mass basic quality (Lin, 1998)

• BQ

GSI

•

Equilibrium method for analysis stability

Equilibrium method for analysis stability on low wall surface coal mining

Slope model, analysis with numerical method for single slope

Slope model, the result of analysis with numerical method for single slope

LESSON PART 13

The hydrological cycle

Vertical Drain Hole

Drain Hole

Mine Water Management

LESSON PART 14

Monitoring System

Handout Geotechnics, Mining Dept. Saptono –

Monitoring (Brady & Brown, 1985)

- a) to record the natural values of, and variations in, geotechnical parameters such as water table level, ground levels and seismic events before the initiation of an engineering project;
- b) to ensure safety during construction and operation by giving warning of the development of excess ground deformations, groundwater pressures and loads in support and reinforcement elements, for example;
- c) to check the validity of the assumptions, conceptual models and values of soil or rock mass properties used in design calculations;
- d) to control the implementation of ground treatment and remedial works such as ground freezing during shaft sinking or tunnelling throughwater-bearing ground, grouting, drainage or the provision of support and reinforcement.

Effect of normal stress level of the process creep (Rai, 1993)

Criterion:

- Curve 1 : There is no creep
- Curve 2 : Stable (no failure)
- Curve 3 : The pseudo-stability, because a failure can occur once upon a time
- Curve 4 : Soon failure

The pattern of displacement for horizontal displacement behavior (Mercer and Stacey, 2008)

Displacement monitoring

- "Total Station": Electronic Distance Measurement (EDM) + Theodolite
- "DGPS" Different Global Positioning System: Base station + measuring stations

Slope Stability Radar

Slope Stability Radar

Surface rod extensometer (Crackmeter)

Vibrating wire displacement gauge (or a vernier for manual readings or a linier transducer) accuracy < 1 mm

Borehole Inclinometer (Slope indicator)

Borehole Inclinometer (Slope indicator)

References

- Afrouz, A.A. (1992): *Practical Handbook of Rock Mass Classification Systems and Modes of Ground Failure*, Boca Raton: CRC Press.
- Bandis, S. (1990): Scale effects in the strength and deformability of rocks and rock joints, Proc. The 1st Intl. Workshop on scale effects in Rock masses, Edited by Cunha, P.A. Luen, Norway 59-76.
- Barton, N.R. (1973): *Review of a New Shear Strength Criterion for Rock Joint*, Engineering Geology, Elsevier, Vol. 7. pp. 287 332.
- Barton, N.R. (1976): *The shear strength of rock and rock joints*, Intl. J. Rock Mech. Min. & Sci. Vol. 13: 255-279.
- Barton, N.R. and Bandis, S. (1990): *Review on Predictive Capabilities of JRC JCS Model in Engineering Practice,* Balkema, Rotterdam. pp. 603 610.
- Barton, N.R. and Chobey, V. (1977): The Shear Strength of Rock Joint in Theory and Practice, Rock Mechanics. Vol. 10. pp. 1 – 54.
- Bieniawski, Z.T. (1973): *Engineering Classification of Jointed Rock Masses*, Trans. S. Afr. Inst. Civ. Eng. 15. pp. 335 344.
- Bieniawski, Z.T. (1989): *Engineering Rock Mass Classifications*, John-Wiley, New York.

- Brady, B.H.G. and Brown, E.T. (1985): *Rock Mechanics for Underground Mining,* George Allen and Unwin, London.
- Cunha, P.A. (1990): *Scale effects in Rock Masses*, Proc. The 1st Intl. Workshop on scale effects in Rock masses, Edited by Cunha, P.A. Luen, Norway 3-30.
- Deere, D.U. and Miller, R.P. (1966): *Engineering Classification and Index Properties for Intact Rocks,* Technical Report, Air Force Weapons Laboratory, New Mexico, AFNL-TR. 65-116.
- Edelbro, C. (2004): *Evaluation of Rock mass Strength Criteria*, Licentiate Thesis, Lulea University of Technology.
- Fukozono, T. (1985): A New Method for Predicting The Failure Time of a Slope, Proceeding of the 4th International Conference and Field Workshop on Landslides, Tokyo, pp. 145 – 150.
- Goodman, R.E. (1989): Introduction to Rock Mechanic, 2nd edition, John Wiley, Singapore, pp. 19 – 95.
- Hoek, E. and Bray, J.W. (1981): *Rock Slope Engineering*, Institution of Mining and Metallurgy, London.
- Hoek, E. and Brown, E.T. (1980): *Underground Excavation in Rock,* The Institute of Mining and Metallurgy, London.

- Hoek, E. and Brown, E.T. (1988): The Hoek-Brown Failure Criterion a 1988 Uapdate, Proceedings of the 15th Canadian Rock Mechanics Symposium, Toronto.
- Hoek, E. and Brown, E.T. (1997): Practical Estimates of Rock Mass Strength, International Journal Rock Mechanic & Mining Science and Geomechanic Abstract. 34(8) p. 1165 – 1187.
- ISRM (1981): Rock Characterization Testing and Monitoring ISRM Suggested Method. E.T. Brown (Ed). Pergamon Press. 5 – 30.
- ISRM Suggested Methods (1976): Determining hardness and Abrasiveness of Rock, International Journal. Rock Mechanics, Science. & Geomechanical. Abstract. 15. 89 – 97.
- Kramadibrata, S. (1996): The Influence of Rock Mass and Intact Rock Properties on The Design of Surface Mines with Particular Reference to The Excavatability of Rock, Ph. D. Thesis, Curtin University of Technology.
- Kramadibrata, S. and Jones, I.O. (1992): The Influence of Specimen Size on Strength of Intact Rocks, Western Australian Conference on Mining Geomechanics, WASM Kalgoorlie, Western Australia.

- Kramadibrata, S., Saptono, S., Sulistianto, B. and Wattimena, R.K. (2011): Penentuan Kriteria dan Prosedur Analisis Stabilitas Lereng Batuan Lunak di Tambang Terbuka Batubara, DIPA – Dikti, Pameran Poster, ITB, Bandung.
- Kramadibrata, S., Saptono, S., Sulistianto, B. and Wattimena, R.K. (2011): Pengujian Geser Langsung Skala Besar di Lapangan, Riset – KK ITB, Pameran Poster, ITB, Bandung.
- Kramadibrata, S., Saptono, S., Wattimena, R.K., and Simangunsong, G.M. (2011): Developing A Slope Stability Curve of Open Pit Coal Mine by Using Dimensional Analysis Method, ISRM, Beijing.
- Kramadibrata, S., Saptono, S., Wicaksana, Y. and Prasetyo H. S. (2009): Soft Rock Behavior with Particular Reference to Coal Bearing Strata, The 2nd International Symposium of Novel Carbon Resources Science, Earth Resource Science and Technology, Joint Symposium Kyushu University – Institut Teknologi Bandung.
- Rai, M.A., Kramadibrata, S. dan Wattimena, R.K. (2011): Mekanika Batuan, Penerbit ITB.

- Rai, M.A., Adisoma, G.S., Watimena, R.K. dan Saptono, S. (2001): Penggunaan Perilaku Massa Batuan Elasto-Visko-Plastik Untuk Analisis Kestabilan Lubang Bukaan Bawah Tanah, Jurnal Teknologi Mineral, Vol. VIII No. 4/2001, FIKTM, ITB, Bandung.
- Romana, M. (1988): Practice of SMR Classification for Slope Appraisal, Proceeding 5th International Symposium on Landslides, Lausanne, pp. 1227 – 1231.
- Saptono, S., (2012): Pengembangan Metode Analisis Stabilitas Lereng Berdasarkan Karakterisasi Batuan di Tambang Terbuka Batubara. Disertasi Doktor, Rekayasa Pertambangan, Institut Teknologi Bandung,
- Saptono, S. (2011): Penentuan kekuatan geser jangka panjang batupasir dengan pendekatan perilaku rayapan geser visko-elastik. Seminar Kebumian Nasional, FTM – UPN "Veteran" Yogyakarta. Yogyakarta.
- Saptono, S., Kramadibrata, S. and Sulistianto, B. (2010): The Use of Rock Mass Characteristic for Assessing Slope Stability, The 5th AUTOLE International Postgraduate Students Conference on Engineering, ITB, Bandung, Indonesia.

- Saptono, S., Kramadibrata, S., Sulistianto, B. dan Wattimena, K.R., (2008b): *Peranan Klasifikasi Massa Batuan Pada Perancangan Lereng Tambang Terbuka Penambangan Batubara, PT. Adaro Indonesia*, Proceeding TPT XVII – Perhapi. Juli 2008, Palembang.
- Saptono, S., Kramadibrata, S., Sulistianto, B. dan Wattimena, R.K. (2008c): *Perkiraan Potensi Kelongsoran Lereng Lowwall Penambangan Batubara Berdasarkan Hasil Pemantauan Inclinometer, PT. Adaro Indonesia,* Kursus dan Seminar Geoteknik, Nopember 2008, Diesemas ke 50 ITB.
- Saptono, S., Kramadibrata, S., Sulistianto, B. dan Wattimena, R.K. (2011): *Pengaruh Ukuran Contoh Terhadap Kekuatan Batuan*, Journal Teknologi Mineral, ITB.
- Saptono, S., Kramadibrata, S., Sulistianto, B., Wattimena, K.R., Nugroho, P., Iskandar, E. and Bahri, S., (2008a): Low Wall Slope Monitoring By Robotic Theodolite System Likely to Contribute to Increased Production of Coal in PT. Adaro Indonesia, Proceeding 1st Southern Hemisphere International Rock Mechanics Symposium, Vol. 1, Potvin et al. eds. Perth. Australia.

THANKYOU VERY MUCH