Module 7 Igneous Rocks

IGNEOUS ROCKS

- Igneous Rocks is formed by crystallization of molten rock material
 - Molten rock material below Earth's surface is called <u>magma</u>
 - Molten rock material erupted above Earth's surface is called <u>lava</u>
 - The name changes because the composition of the molten material changes as it is erupted due to escape of volatile gases
 - The origin of magma is commonly from the upper mantle of the earth

Plagioclase Minerals

- Anortite
- Bitownite
- Labradorite
- Andesine
- Oligoclase
- Albite

High Temperature Mineral Suite

<u>Olivine</u>

- Isolated Tetrahedra Structure
- Iron, magnesium, silicon, oxygen
- Bowen's Discontinuous Series

<u>Augite</u>

- Single Chain Structure (Pyroxene)
- Iron, magnesium, calcium, silicon, aluminium, oxygen
- Bowen's Discontinuos Series

<u>Calcium Feldspar</u>

- Framework Silicate Structure (Plagioclase)
- Calcium, silicon, aluminium, oxygen
- Bowen's Continuous Series

Intermediate Temperature Mineral Suite

<u>Hornblende</u>

- Double Chain Structure (Amphibole)
- Iron, magnesium, calcium, silicon, aluminium, oxygen
- Bowen's Discontinuos Series

<u>Biotite</u>

- Sheet Silicate Structure (Mica)
- Iron, magnesium, potassium, silicon, aluminium, oxygen
- Bowen's Discontinuos Series

<u>Sodium Feldspar</u>

- Framework Silicate Structure (Plagioclase)
- Sodium, silicon, aluminium, oxygen
- Bowen's Continuous Series

Low Temperature Mineral Suite

<u>Muscovite</u>

- Sheet Silicate Structure (Mica)
- Calcium, potassium, silicon, aluminium, oxygen
- Bowen's Discontinuos Series

Potassium Feldspar

- Framework Silicate Structure (Orthoclase)
- Potassium, silicon, aluminium, oxygen
- Bowen's Continuous Series

<u>Quartz</u>

- Framework Silicate Structure
- Silicon, oxygen
- Last to crystallize from magma

BOWEN'S REACTION SERIES

- Crystals are formed by ions arranged in orderly patterns
- Crystal size is determined by the rate of cooling
 - Extremely fast cooling
 - Fast cooling
 - Slow cooling

 Extremely fast cooling
Forms glass, not crystals
Occurs above Earth's surface under water or ice

Yields obsidian, volcanic glass

Copyright © McGraw-Hill Companies. Inc. Permission required for reproduction or display

Fast cooling

- Forms very small invisible crystals
- Crystallized out less slowly
- Magma moves more rapidly
- Occurs closer to Earth's surface
- Typical in small intrusions and conduit

Slow cooling

- Forms large, visible crystals
- The slower the cooling rate, the larger the crystals formed
- Occurs below Earth's surface
- Typical of plutonic rocks

IGNEOUS ROCKS CLASSIFICATION

- Based on the location of their frozen/cooling:
 - Intrussive
 - Extrussive
- Based on their texture:
 - Plutonik: phaneritic
 - Volcanic: aphanetic

Classification Based on Silica (SiO2) Content

- Ultra basic (Silica content < 45% of total composition)
- Basic (Silica content 45% 52%)
- Intermediate (Silica content 52% 66%)
- Acidic (Silica content > 66%)

Plutonic (intrusive) Igneous Rocks

Plutonic (intrusive) Igneous Rocks

Plutonic (intrusive) Igneous Rocks

Laccoliths

 are masses of igneous rock between layers of the surrounding rock

Intrusion Structures

- 1. Batholith
- 2. Lacolith
- 3. Stock
- 4. Loppolith
- 5. Phacolith
- 6. Dyke / Pipe
- 7. Sill

SILL DAN DIKE

Dikes and Sills

- are tabular intrusive bodies.
- Dikes cut across layer of the surrounding rock
- Sills are injected between layers of strata

Volcanic (extrusive) Igneous Rocks

Copyright @ McGraw-Hill Companies, Inc. Permission required for reproduction or displa

Volcanic (extrusive) Igneous Rocks

A lava fountain and rapidly

flowing basalt Copyright © McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Copyright © McGraw-Hill Companies, Inc. Permission required for reproduction or display

Photo by J. D. Griggs, U.S. Geological Survey

AA, a jagged-surfaced form of basalt that crystallizes out at the end of a basalt flow

Photo by D. W. Peterson, U.S. Geological Survey

Pahoehoe, a smooth-surfaced, ropy form of basalt that crystallizes out near the beginning of a basalt flow

Basalt, a mafic composition lava

Volcanic (extrusive) Igneous Rocks

Andesite flow, Mexico Andesite flow, Cascade Range, Oregon

Andesite, an intermediate composition lava

Rhyolite dome, Mono Craters, California

Volcanic (extrusive) Igneous Rocks

Rhyolite flow showing columnar jointing, MacDougalls Island, New Brunswick

Rhyolite, a felsic composition lava

Igneous rocks structures

Columnar joint

Spheroidal wheatering

Sheeting joint in lava

Lava structures

Roppy lava

Pillow lava

- Columnar joint and sheeting joint are structures formed by the cooling of magma
- Ropy structure will be formed when low viscosity lava is cooled
- Pillow structure will be formed when low viscosity lava is cooled in water environment.
- Blocky fragmental structure will be formed when viscose lava is cooled.

IGNEOUS ROCK TEXTURE PROVIDES INSIGHT INTO THE COOLING HISTORY OF THE ROCK

Copyright @ McGraw-Hill Companies, Inc. Permission required for reproduction or display.

A phaneritic texture

- Consists of visible grains
- Is formed by very slow cooling below Earth's surface
- Characteristic of plutonic igneous rocks *i.e.* gabbro, diabase, diorite, granite

Aphanitic texture

- Consists of invisible grains formed by fast rate of cooling
- Characteristic of the lavas: *basalt, andesite, rhyolite*

Photo by C. C. Plummer

Glassy texture

- Consists of visible grains
- Is not crystalline, is formed by extremely rapid cooling
- Characteristic of Obsidian

Photo by C. C. Plum Copyright © McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Vesicular structure

- Is bubbly, formed by trapped bubbles of gas
- Characteristic of scoria (vesicular basalt) and pumice (vesicular rhyolite)

Copyright @ McGraw-Hill Companies, Inc. Permission required for reproduction or display

Andesite (porphyritic)

Photo by C. C. Plummer

Porphyritic texture

- Consists of phaneritic (visible) grains in an aphanitic matrix
 - •Phaneritic crystals form by very slow cooling below Earth's surface
 - •Aphanitic crystals form by very rapid cooling above Earth's surface

Characteristic of the lavas: <u>basalt</u>, <u>andesite</u>, <u>rhyolite</u>

 Formed when a lava is erupted as a crystal mush

Igneous Rock Texture: holocrystaline

Bowen's Reaction Series

Igneous Rock Texture: Hypocrystalin

Bowen's Reaction Series

Texture and where they form

ABOVE EARTH'S SURFACE

Based on Where They Form and Their Texture

Glassy Texture Vesicular Texture

Volcanic (Extrusive) Igneous Rocks

Plutonic (intrusive) Igneous Rocks

CLOSER EARTH'S SURFACE

Aphanitic Texture

BELOW EARTH'S SURFACE

Porphyritic Texture

Dunit (Olivine rich)

Harzburgit (Pyroxene rich)

<u>Ultramafic</u>

- Means rich in magnesium and iron
- Is the average composition of Earth's mantle
- Composed of olivine and augite
- Example: *peridotite*

Copyright © McGraw-Hill Companies, Inc. Permission required for reproduction or disp

<u>Mafic</u>

- Means rich in magnesium, iron, and/or calcium
- Is the average composition of oceanic crust
- Composed of olivine, augite, and calcium, plagioclase feldspar
- Examples: basalt, diabase, and gabbro

Intermediate

- Means half mafic, half felsic
- Is the composition of a mixture of oceanic and continental crust?
- Composed of hornblende and calcium-sodium plagioclase feldspar
- Examples: *andesite* and *diorite*

Copyright @ McGraw-Hill Companies, Inc. Permission required for reproduction or display

Ryolite

<u>Felsic</u>

- Means rich in feldspar and silica
- Is the average composition of continental crust
- Composed of potassium feldspar, sodium plagioclase feldspar, quartz
- Examples: *rhyolite* and granite

Classification and naming of igneous rocks

IGNEOUS ROCK CLASSIFICATION MINERAL COMPOSITION

ROCK TEXTURE

APHANITIC

IGNEOUS ROCK CLASSIFICATION MINERAL COMPOSITION

HORNBLENDE

BIOTTTE

SODIUM FELDSPAR

ROCK TEXTURE

PHANERITIC

APHANITIC

DIORITE

IGNEOUS ROCK CLASSIFICATION MINERAL COMPOSITION

POTASSIUM FELDSPAR

QUARTZ

ROCK TEXTURE

PHANERITIC

GRANTTE

Obsidian (volcanic glass)

Copyright @ McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Photo by C. C. Plummer

Scoria (vesicular basalt)

Copyright @ McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Pumice (vesicular rhyolite)

Copyright @ McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Photo by C. C. Plummer

Copyright @ McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Basalt

Photo by C. C. Plummer

Porphyritic Andesite

Copyright @ McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Andesite (porphyritic)

Rhyolite

Copyright @ McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Ryolite

Gabbro

Copyright @ McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Gabbro

Diorite

Copyright @ McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Photo by C. C. Plummer

Granite

Copyright @ McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Granite

How to describe igneous rock?

- Color:
 - Dark color: black, dark gray, etc
 - Gray
 - Light color: light gray
- Structure: massive, vesicular, pillow, etc
- Texture: phaneritic, aphanetic, holocrystaline, hypocrystaline, holohyaline, porphiritic, etc
- Mineral Composition: olivine, pyroxene, amphibole, plagioclase, quartz, etc

